人学始知道,不学非自然。

4. 二维数组中的查找

题目链接

牛客网

题目描述

给定一个二维数组,其每一行从左到右递增排序,从上到下也是递增排序。给定一个数,判断这个数是否在该二维数组中。

Consider the following matrix:
[
  [1,   4,  7, 11, 15],
  [2,   5,  8, 12, 19],
  [3,   6,  9, 16, 22],
  [10, 13, 14, 17, 24],
  [18, 21, 23, 26, 30]
]

Given target = 5, return true.
Given target = 20, return false.

解题思路

要求时间复杂度 O(M + N),空间复杂度 O(1)。其中 M 为行数,N 为 列数。

该二维数组中的一个数,小于它的数一定在其左边,大于它的数一定在其下边。因此,从右上角开始查找,就可以根据 target 和当前元素的大小关系来快速地缩小查找区间,每次减少一行或者一列的元素。当前元素的查找区间为左下角的所有元素。


public boolean Find(int target, int[][] matrix) {
    if (matrix == null || matrix.length == 0 || matrix[0].length == 0)
        return false;
    int rows = matrix.length, cols = matrix[0].length;
    int r = 0, c = cols - 1; // 从右上角开始
    while (r <= rows - 1 && c >= 0) {
        if (target == matrix[r][c])
            return true;
        else if (target > matrix[r][c])
            r++;
        else
            c--;
    }
    return false;
}

版权声明:如无特别声明,本站收集的文章归  cs-notes  所有。 如有侵权,请联系删除。

联系邮箱: GenshinTimeStamp@outlook.com

本文标题:《 4. 二维数组中的查找 》

本文链接:/%E9%9D%A2%E8%AF%95%E5%88%B7%E9%A2%98/%E5%89%91%E6%8C%87offer%E9%A2%98%E8%A7%A3/%E9%A2%98%E8%A7%A3/4.-%E4%BA%8C%E7%BB%B4%E6%95%B0%E7%BB%84%E4%B8%AD%E7%9A%84%E6%9F%A5%E6%89%BE.html